Abstract

Alexandria Sanitary Drainage Company (ASDCO), Alexandria, Egypt has two primary treatment plants, the eastern and the western wastewater treatment plants (EWTP and WWTP) that receive mixed domestic-industrial influents and discharge into L. Mariut. The lake is subjected therefore to severe levels of pollution and dominated by members of cyanobacteria that can cope with the high pollution load in the lake water. Isolation and utilization of the locally generated cyanobacterial biomass for remediation processes of highly toxic pollutants offers a very efficient and cheap tool for governmental or private industrial activities in Alexandria and will generate a source of revenue in Egyptian localities. The main objective of the present study was to investigate the biodegradation and biosorption capacity of some potential cyanobacterial species dominating the lake ecosystem toward organic and inorganic contaminants polluting the primary-treated effluents of the EWTP and WWTP. The primary effluents were subjected to biological treatment using three axenic cyanobacterial strains (Anabaena oryzae, Anabaena variabilis and Tolypothrix ceytonica) as batch system for 7 days. Removal efficiencies (RE) of the different contaminants were evaluated and compared. Results confirmed the high efficiencies of the investigated species for the removal of the target contaminants which were species and contaminant-dependent. BOD5 and COD recorded 89.29 and 73.68% as maximum RE(s) achieved by Anabaena variabilis and Anabaena oryzae, respectively. The highest RE of the TSS recorded 64.37% achieved by Tolypothrix ceytonica, while 38.84% was recorded as the highest TSD RE achieved by Anabaena variabilis. Tolypothrix ceytonica also exhibited the highest RE for FOG recorded 93.75%. Concerning the contaminant metals, Tolypothrix ceytonica showed the highest biosorption capacity where 86.12 and 94.63% RE were achieved for Zn and Cu, respectively. In conclusion, results of the present study confirmed the advantageous potential of using the tested cyanobacterial species for the treatment of contaminated wastewater. Results also clearly showed the quality improvement of the discharged wastewater which in turn will eliminate or at least minimize the expected deterioration of the receiving environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call