Abstract
BackgroundCardiac fibrosis contributes to end-stage extracellular matrix remodeling and heart failure (HF). Cardiac fibroblasts (CFs) differentiate into myofibroblasts (myoFbs) to preserve the structural integrity of the heart; however, the molecular mechanisms regulating CF transdifferentiation remain poorly understood. Protein arginine deiminase (PAD), which converts arginine to citrulline, has been shown to play a role in myocardial infarction, fibrosis, and HF. This study aimed to investigate the role of PAD in CF differentiation to myoFbs and identify the citrullinated proteins that were associated with phenotypic changes in CFs. ResultsGene expression analysis showed that PAD1 and PAD2 isoforms, but not PAD4 isoforms, were abundant in both CFs and myoFbs, and PAD1 was significantly upregulated in myoFbs. The pan-PAD inhibitor BB-Cl-amidine (BB-Cl) downregulated the mRNA expression of PAD1 and PAD2 as well as the protein expression of the fibrosis marker COL1A1 in CFs and myoFbs. Interestingly, a proteomic approach pointed to the activation of the Nrf2/HO-1 signaling pathway upon BB-Cl treatment in CFs and myoFbs. BB-Cl administration resulted in the upregulation of HO-1 at both the gene and protein levels in CFs and myoFbs. Importantly, the protein citrullination landscape of CFs consisting of 86 novel citrullination sites associated with focal adhesion (FN1(R1054)), inflammation (TAGLN(R12)) and DNA replication (EEF2(R767)) pathways was identified. ConclusionsIn summary, we revealed that BB-Cl treatment resulted in increased HO-1 expression via the Nrf2 pathway, which could prevent excessive tissue damage, thereby leading to substantial clinical benefits for the treatment of cardiac fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.