Abstract

Finding the most effective method of minimizing the gap effect in alveolar crest remodeling constitutes a clinical challenge for immediate implant technique. To evaluate the effectiveness of osseoconductive xenografts with different porosities in the crestal bone region, with and without guided bone regeneration, over immediate implant installation. Five bone defects (6 mm in diameter/4 mm depth) were prepared on one side of the mandibles of twelve dogs. Implants of 3.3 × 10 mm were installed on the mesial side of each defect, providing a 2.7-mm distal gap. Defects were randomly filled with autogenous bone, coagulum, a deproteinized bovine bone mineral (DBBM) block, a DBBM sponge, or DBBM granules. The same procedures were performed on the opposite side after 8 weeks. Collagen membranes were used to cover the defects on half of the sides. The animals were sacrificed after 8 weeks. The outcomes were evaluated by histology, histomorphometric analysis, resonance frequency analysis, and micro-CT analysis. The histomorphometry showed the DBBM sponge to provide similar bone formation to autogenous bone at 8 weeks without a membrane. The coagulum rendered better bone formation at 16 weeks (membrane) (p < .05). The DBBM block exhibited the poorest results between treatments (8 and 16 weeks, with or without membrane). Micro-CT analysis revealed increasing bone surface values in sites with DBBM granules, followed by the DBBM sponge (8 weeks without membrane) and autogenous bone at 8 weeks with membrane (p < .05). Porosity analysis of the biomaterials showed the highest number, volume, and surface area of closed pores in DBBM granules. The DBBM block presented the highest volume of open pores, open porosity, and total porosity. The high-porosity block (DBBM block) failed to provide greater bone repair within the defect. Biomaterials with lower porosity (DBBM sponge and granules) showed similar or higher bone formation when compared with autogenous bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.