Abstract
As quantum dots (QD) can confine a small number of carriers in localized states with discrete energies, it is questionable to neglect correlations between the carriers when describing their dynamics. We analyze the influence of carrier correlations in a single QD on Coulomb scattering processes, which are due to the contact with a quasicontinuum of wetting-layer (WL) states. Results obtained from a Boltzmann equation are compared with the fully correlated dynamics governed by a von Neumann--Lindblad equation. In a first step, we take into account correlations generated by the exact treatment of Pauli blocking due to the contributing QD carrier configurations. Subsequently, we include correlations generated by energy renormalizations due to Coulomb interaction between the QD carriers. It is shown that at low WL carrier densities, neither Pauli correlations nor Coulomb correlations can be safely neglected, if the dynamics of single-particle states in the QD are to be predicted qualitatively and quantitatively. In the high-density regime, both types of correlations play a lesser role and thus a description of carrier dynamics by a Boltzmann equation becomes reliable. Furthermore, the efficiency of WL-assisted scattering processes as well as scattering-induced dephasing rates depending on the WL carrier density are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have