Abstract

AbstractIn this research, the graphene oxide nanoribbons (GONRs) were substantially synthesized by the oxidative longitudinal unzipping of the multi‐walled carbon nanotubes (MWCNTs). Then, a direct electrochemical technique was employed for reducing GONRs adsorbed on the screen printed carbon electrode (SPCE). Electrochemical reduction effectively eliminated the oxygen‐containing groups in the GONRs and produced the electrochemically reduced graphene nanoribbons (ERGNRs). Field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) were employed to characterize the materials. The modified SPCE with ERGNRs (ERGNRs/SPCE) displayed acceptable electrocatalytic characteristics towards the oxidation of dopamine (DA) and uric acid (UA) and applied to the simultaneous determination of these two analytes. ERGNRs/SPCE has a peak potential difference of 245 mV between DA and UA. The anodic peak currents of DA and UA were linear within the concentration ranges between 0.5 and 300.0 μM and 1.0 to 400.0 μM in phosphate buffer (pH=7.0) respectively. The detection limit of the technique for DA is 0.15 μM (S/N=3) and for UA is 0.3 μM (S/N=3). The proposed approach has been applied to the determination of DA and UA in real samples and generated acceptable outputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.