Abstract

Reductive sulfur-containing by-products (S-BPs) released from industrial process mainly exist in the simple form of sulfide and sulfite. In this study, recent advances to remove and make full use of reductive S-BPs to achieve efficient contaminant removal and hydrogen production are critically reviewed. Sulfide, serves as both reductant and nucleophile, can form intermediates with the catalyst surface functional group through chemical interaction, efficiently promoting the catalytic reduction process to remove contaminants. Sulfite assisted catalytic process could be classified to the advanced reduction processes (ARPs) and advanced oxidation processes (AOPs), mainly depending on the presence of dissolved oxygen (DO) in the solution. During ARPs, sulfite could generate reductive active species including hydrated electron (eaq-), hydrogen radical (H·), and sulfite radical (SO3•−) under the irradiation of UV light, leading to the efficient reduction removal of a variety of contaminants. During AOPs, sulfite could first produce SO3•− under the action of the catalyst or energy, initiating a series of reactions to produce oxysulfur radicals. Various contaminants could be effectively removed under the role of these oxidizing active species. Sulfides and sulfites could also be removed along with promoting hydrogen production via photocatalytic and electrocatalytic processes. Besides, the present limitations and the prospects for future practical applications of the process with these S-BPs are proposed. Overall, this review gives a comprehensive summary and aims to provide new insights and thoughts in promoting contaminant removal and hydrogen production through taking full advantage of reductive S-BPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.