Abstract

We report a preliminary value for the zero magnetic field Na 2S(f = 1, m = − 1) + Na 2S(f = 1, m = − 1) scattering length, a1,−1. This parameter describes the low-energy elastic two-body processes in a dilute gas of composite bosons and determines, to a large extent, the macroscopic wavefunction of a Bose condensate in a trap. Our scattering length is obtained from photoassociative spectroscopy with samples of uncondensed atoms. The temperature of the atoms is sufficiently low that contributions from the three lowest partial waves dominate the spectrum. The observed lineshapes for the purely long-range molecular state enable us to establish key features of the ground state scattering wavefunction. The fortuitous occurrence of a p-wave node near the deepest point (Re = 72 a0) of the potential curve is instrumental in determining a1,−1 = (52 ± 5) a0 and a2.2 = (85 ± 3) a0, where the latter is for a collision of two Na 2S(f = 2, m = 2) atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.