Abstract

Wear and mileage performance are the foremost performances for truck bus radial (TBR) tires. There are a lot of researches about the tire wear performance as well as the contact patch phenomenon by using finite element analysis (FEA) method or testing. But there is little published data on the correlations between the footprint geometry and the tread wear performance of tires. In this paper, an experiment on tire-ground performance of TBR tires is carried out by using Tekscan. The real-time changes of contact-area pressure distribution that occurred during the process of continuous load and unload are recorded. Three types of tires that act differently in behavior under normal usage are analyzed. A new method of researching in tire tread wear, which focuses on the geometrical characters of the footprint, is put forward. The experimental results of the three tires are described by using footprint geometrical characters. On the basis of studying the changing laws of footprint geometrical characters during the loading process and considering consumer survey and factory feedback information, the correlations between the geometrical character of footprints and tread destruction form are built. The analyzed results show that a greater contact area coefficient and a steady coefficient of contact result in a better wear performance for TBR tires. The footprint-shape coefficient changing laws in the process of loading are found to have a very good coincidence with the tread wear of the three types of tires. Tires with a smaller footprint-shape coefficient are likely to have an average tread wear while avoiding the shoulder wear first. The proposed research provides a new solution to predict tire-ground performance at the point of footprint and several useful references for improving tire design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call