Abstract

Deep learning is accelerating drug discovery. However, current approaches are often affected by limitations in the available data, in terms of either size or molecular diversity. Active deep learning has high potential for low-data drug discovery, as it allows iterative model improvement during the screening process. However, there are several 'known unknowns' that limit the wider adoption of active deep learning in drug discovery: (1) what the best computational strategies are for chemical space exploration, (2) how active learning holds up to traditional, non-iterative, approaches and (3) how it should be used in the low-data scenarios typical of drug discovery. To provide answers, this study simulates a low-data drug discovery scenario, and systematically analyzes six active learning strategies combined with two deep learning architectures, on three large-scale molecular libraries. We identify the most important determinants of success in low-data regimes and show that active learning can achieve up to a sixfold improvement in hit discovery when compared with traditional screening methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.