Abstract
Many physical, chemical and biological systems have an inherent discrete spatial structure that strongly influences their dynamical behaviour. Similar remarks apply to internal or external noise. In this paper we study the combined effect of spatial discretization and stochastic perturbations on travelling waves in the Nagumo equation, which is a prototypical model for bistable reaction-diffusion partial differential equations (PDEs). We prove that under suitable parameter conditions, various discrete-stochastic variants of the Nagumo equation have solutions, which stay close on long time scales to the classical monotone Nagumo front with high probability if the noise covariance and spatial discretization are sufficiently small.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have