Abstract
A well-known optimal velocity (OV) model describes vehicle motion along a single lane road, which reduces to a perturbed modified Korteweg–de Vries (mKdV) equation within the unstable regime. Steady travelling wave solutions to this equation are then derived with a multi-scale perturbation technique, where the travelling wave propagation coordinate depends upon slow and fast variables. The leading order solution in the hierarchy is then written in terms of these multi-scaled variables. At the following order, a system of differential equations is highlighted that govern the slowly evolving properties of the leading solution. Next, it is shown that the critical points of this system signify travelling waves without slow variation. As a result, a family of steady waves with constant amplitude and period are identified. When periodic boundary conditions are satisfied, these solutions’ parameters, including the wave speed, are associated with the driver’s sensitivity, aˆ, which appears in the OV model. For some given aˆ, solutions of both an upward and downward form exist, with the downward type corresponding to traffic congestion. Numerical simulations are used to validate the asymptotic analysis and also to examine the long-time behaviour of our solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.