Abstract

ABSTRACTThis paper is concerned with the time periodic traveling wave solutions for a periodic Lotka–Volterra predator–prey system, which formulates that both species synchronously invade a new habitat. We first establish the existence of periodic traveling wave solutions by combining the upper and lower solutions with contracting mapping principle and Schauder’s fixed point theorem. The asymptotic behavior of nontrivial solution is given precisely by the stability of the corresponding kinetic system that has been widely investigated. Then, the nonexistence of periodic traveling wave solutions is confirmed by applying the theory of asymptotic spreading. We show the conclusion for all positive wave speed and obtain the minimal wave speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.