Abstract
Abstract In this paper, different traveling wave solutions of the kink type are obtained for significant advection-diffusion-reaction mechanisms such as the singularly perturbed generalized Burgers Huxley and Burgers Fisher equations. To achieve this, a nonlinear transformation and an ansatz method have been utilized. Stability analysis is performed on different types of equations to detect the effects of the coefficients on the stability of the obtained solutions. Particularly under advection dominant cases, the stability of the derived solutions is examined separately. It is observed that especially the coefficient of nonlinearity, and partly one of the reaction coefficients, determine the stability behaviour under advection dominance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.