Abstract

In this study, in the purpose of providing a dynamic procedure for reliable travel time specification, the performance of a neural functional approximation method is analysed. The numerical analyses are carried out on the succeeding sections of a freeway segment inputting data obtained from microwave radar sensor units located successively at the cross-sections of a freeway segment of approximately 4km. Measurements on traffic variables, i.e., vehicle counts, speed, and occupancy, for the reference time periods are processed. The structure of the employed radial basis function neural networks are configured considering the data of a three-lane freeway segment obtained by succeeding sensors located in side-fired position. Travel time measures approximated by the neural models are compared with the corresponding field measurements obtained by probe vehicle. Results prove neural model's performance in representing spatiotemporal variation of flow dynamics as well as travel times. Adaptability of the proposed travel time specification procedure to real-time intelligent control systems is a possible future extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.