Abstract
We investigate the appearance of trapping states in pedestrian flows through bottlenecks as a result of the interplay between the geometry of the system and the microscopic stochastic dynamics. We model the flow through a bottleneck via a Zero Range Process on a one-dimensional periodic lattice. Particle are removed from the lattice sites with rates proportional to the local occupation numbers. The bottleneck is modeled by a particular site of the lattice whose updating rate saturates to a constant value as soon as the local occupation number exceeds a fixed threshold. We show that for any finite value of the threshold the stationary particle current saturates to the limiting bottleneck rate when the total particle density in the system exceeds a critical value corresponding to the bottleneck rate itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.