Abstract

Weak axial variations in magnetic or electric confinement fields in pure electron plasmas cause slow electrons to be trapped locally, and collisional diffusion across the trapping separatrix then causes surprisingly large trapped-particle-mediated (TPM) damping and transport effects. Here we characterize TPM damping of m theta not equal to 0, m(z) = +/-1 Trivelpiece-Gould plasma modes in large-amplitude long-lived Bernstein-Greene-Kruskal states. The TPM damping gives gammaBGK/omega approximately 10(-4) and seems to dominate in regimes of weak interparticle collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.