Abstract

Space-charge limited current transport in organic devices, relevant to the operation of a range of organic optoelectronic devices, is analyzed in the frequency domain. The classical multiple trapping picture with one transport state and one trap level is used as the basis for the descriptions. By varying the energetic and kinetic properties of the traps, we show that the admittance and the capacitance spectra are considerably modified depending on the interplay between the trap-limited mobility and the trap kinetics. We point out that capacitance steps at low-frequency, usually found in experiments, are observed only for slow traps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.