Abstract
Low-temperature MOS-gated Hall measurements and gated diode capacitance-voltage (C-V) measurements were performed to characterize both trap density and Hall mobility on 4H-silicon carbide MOSFETs with gate oxides grown by sodium enhanced oxidation (SEO) and thermally grown in N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O. The interface trap density D <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">it</sub> was determined close to the conduction band edge by Hall effect measurements to be 2?10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ? eV <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> in the N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O-based oxide sample and 1?10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ? eV <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> in the SEO sample. The presence of these interface trap states above the conduction band edge suggest that they are near interface oxide trap states rather than conventional fast interface trap states. The threshold voltage changes with temperature in MOSFETs with gate oxides grown thermally with N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O but not significantly in MOSFETs with gate oxides grown by SEO. The superior threshold voltage stability at low temperatures in the SEO-based MOSFET compared to the N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O oxidation-based MOSFET is due to lower trap density near the conduction band edge. Gated diode C-V measurements showed that MOSFETs with gate oxide grown by SEO had a higher density of interface traps (2.2?10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ) deeper in the bandgap compared to MOSFETs with gate oxides thermally grown in N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O (1.4?10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ). A maximum Hall mobility of 65 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V ? s was measured in the SEO-based MOSFET, and 16 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V ? s was measured on the N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O oxidation-based MOSFET at 225 K. The mobility correlates well with the interface trap density close to the conduction band edge as measured by Hall effect measurements but does not correlate with gated diode C-V measurements of traps deeper in the band gap. Temperature-dependent gated Hall mobility measurements were used to show that the inversion layer mobility in the SEO samples were limited by Coulomb scattering from interface trapped charge and surface roughness scattering but not by phonon scattering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.