Abstract

The problem of determining the transversely isotropic tensor closest in Euclidean norm to a given anisotropic elastic modulus tensor is considered. An orthonormal basis in the space of transversely isotropic tensors for any given axis of symmetry was obtained by decomposition of a transversely isotropic tensor in the general coordinate system into one isotropic part, two deviator parts, and one nonor part. The closest transversely isotropic tensor was obtained by projecting the general anisotropy tensor onto this basis. Equations for five coefficients of the transversely isotropic tensor were derived and solved. Three equations describing stationary conditions were obtained for the direction cosines of the axis of rotation (symmetry). Solving these equations yields the absolute minimum distance from the transversely isotropic tensor to a given anisotropic elastic modulus tensor. The transversely isotropic elastic modulus tensor closest to the cubic symmetry tensor was found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.