Abstract

We derive the atomistic representations of the elastic tensors appearing in the linearized theory of first strain-gradient elasticity for an arbitrary multi-lattice. In addition to the classical second-Piola) stress and elastic moduli tensors, these include the rank-three double-stress tensor, the rank-five tensor of mixed elastic moduli, and the rank-six tensor of strain-gradient elastic moduli. The atomistic representations are closed-form analytical expressions in terms of the first and second derivatives of the interatomic potential with respect to interatomic distances, and dyadic products of relative atomic positions. Moreover, all expressions are local, in the sense that they depend only on the atomic neighborhood of a lattice site. Our results emanate from the condition of energetic equivalence between continuum and atomistic representations of a crystal, when the kinematics of the latter is governed by the Cauchy–Born rule. Using the derived expressions, we prove that the odd-order tensors vanish if the lattice basis admits central-symmetry. The analytical expressions are implemented as a KIM compliant algorithm to compute the strain gradient elastic tensors for various materials. Numerical results are presented to compare representative interatomic potentials used in the literature for cubic crystals, including simple lattices (fcc Al and Cu and bcc Fe and W) and multi-lattices (diamond-cubic Si). We observe that central potentials exhibit generalized Cauchy relations for the rank-six tensor of strain-gradient elastic moduli. In addition, this tensor is found to be indefinite for many potentials. We discuss the relationship between indefiniteness and material stability. Finally, the atomistic representations are specialized to central potentials in simple lattices. These expressions are used with analytical potentials to study the sensitivity of the elastic tensors to the choice of the cutoff radius.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.