Abstract

A diametral compression test was used to measure the transverse strength of SCS‐6 SiC fibers before and after heat treatment. Subjecting fibers to diametral compression successfully produced transverse tensile failure in the form of fiber cracking along the same diametral plane in which the compressive load was applied. An analysis of the hoop stress along the diametral plane, in which the effects of the C core were included, showed that there is a large tensile hoop stress concentration in the SiC sheath at the interface between the C core and the SiC sheath, where the stress is 6.3 times greater than the stress present in a solid SiC fiber under identical loading. This high tensile hoop stress concentration promotes crack initiation near the core and significantly limits the capability of these fibers to withstand transverse compressive loading. The maximum tensile hoop stresses, located at the interface between the C core and SiC sheath, at the measured failure loads were 850 MPa for the as‐received SCS‐6 fiber and 1210 MPa for fibers exposed to a 1‐h heat treatment at 1850°C in 138 MPa of Ar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.