Abstract

Nonradiative transitions occurring in semiconductors result in thermal emissions carrying information on the material’s thermal and electronic properties. A simple one-dimensional theoretical model is devised which accounts for the photothermal signal variations due to nonradiative transitions occurring in semiconductor thinfilms. The theory was verified by determining the transport properties of p-type silicon wafer. We could get the thermal diffusivity, minority carrier lifetime, surface recombination velocity, and minority carrier mobility of CuInS2 thin films, thereby proving the efficiency and simplicity of photothermal beam deflection technique for real time characterization of semiconductor thin films. The film fabrication history, composition, and post deposition treatments play crucial role in determining the transport properties and the effect of these conditions on transport properties of the film as well as on the solar cell parameters is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call