Abstract
We present a general result of transverse nonlinear instability of 1d solitary waves for Hamiltonian PDE's for both periodic or localized transverse perturbations. Our main structural assumption is that the linear part of the 1-d model and the transverse perturbation “have the same sign”. Our result applies to the generalized KP-I equation, the Nonlinear Schrödinger equation, the generalized Boussinesq system and the Zakharov–Kuznetsov equation and we hope that it may be useful in other contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.