Abstract
The stability properties of line solitary wave solutions of the (2+1)-dimensional Boussinesq equation with respect to transverse perturbations and their consequences are considered. A geometric condition arising from a multisymplectic formulation of this equation gives an explicit relation between the parameters for transverse instability when the transverse wave number is small. The Evans function is then computed explicitly, giving the eigenvalues for the transverse instability for all transverse wave numbers. To determine the nonlinear and long-time implications of the transverse instability, numerical simulations are performed using pseudospectral discretization. The numerics confirm the analytic results, and in all cases studied, the transverse instability leads to collapse.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have