Abstract
Fluorescence dipolar resonance energy transfer between a receptor-bound fluorescent agonist, dansyl-C6-choline, and two membrane-partitioned fluorescent probes, C18-rhodamine and C12-eosin, was used to measure the transverse distance between the acetylcholine (ACh) binding sites on the intact Torpedo nicotinic acetylcholine receptor (nAChR) and the surface of the lipid membrane. Control experiments demonstrated that: (1) dansyl-C6-choline binds to cobra-alpha-toxin sensitive sites on the nAChR with a KD approximately 20 nM, (2) the quantum yield of dansyl-C6-choline increases 3.1-fold upon binding, and (3) the receptor-bound dansyl-C6-choline fluorescence is stable for at least 2 h. The calculated transverse distances between receptor-bound dansyl-C6-choline and the membrane-partitioned acceptors, C12-eosin and C18-rhodamine, were 31 and 39 A, respectively. Therefore, given the dimensions of the extracellular domain of the receptor, the ACh binding sites are located significantly below (approximately 25 A) the extracellular apex of the nAChR. These results are in agreement with the recent proposed location for the ACh binding sites in a pocket within each of the two alpha-subunits, approximately 30 A above the membrane surface (Unwin, N. (1993) J. Mol. Biol. 229: 1101-1124).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.