Abstract

In Liquid Composite Molding (LCM), compaction of the reinforcement occurs during several stages of the entire process, including before and during resin injection, which leads to significant deformations of fibrous architecture. This article aims to study by X-ray microtomography the mesoscopic deformations of 2D glass woven fabrics under transverse compaction for a range of fiber volume fractions encountered in high performance composite applications. In Part I, material twin geometric models of dry fibrous reinforcements were created at different levels of compaction to study the evolution of the morphological features and displacements of fiber tows when compressed during processing. Part II proposes a new approach to track the motion of contour points on cross-sections of fiber tows during compaction. This will allow investigating more precisely the behavior of fiber tows by calculating their mesoscopic deformations. In particular, it will also be possible to study in more details the effect of contacts between tows and of nesting between fabric plies on the mesoscopic deformations of textile preforms during compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call