Abstract

The adhesively bonded single-lap joint strength is computed numerically and verified with the experiment. An ABAQUS model is prepared to analyze by adding the primary information, i.e., geometry, material properties, element, and solution type, including the boundary conditions. The model accuracy has been verified through two-step comparisons with published numerical deflection data and in-house experiments. The validated model is used to compute the energy-absorbing capacity better to understand lap joint strength. Further, the statistical analysis (variance-based sensitivity analysis) is conducted to measure the model output variability with the model input parameter. Additionally, the influences of geometry and property-dependent design parameters (layup schemes, loading position, adherend thickness ratio (L/t), and adhesive thickness ratio: (a/h), including the overlapping length (25, 30, 35, and 40 mm) are examined through several examples. The conclusions on the overlap length in bonded joints are that an increase in intact/lap length improves the joint stiffness and decreases the deflection. Similarly, a few insights on layer sequence (angle-ply) and shear stress thickness ratio are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call