Abstract

We consider holomorphic mappings $H$ between a smooth real hypersurface $M\subset \bC^{n+1}$ and another $M'\subset \bC^{N+1}$ with $N\geq n$. We provide conditions guaranteeing that $H$ is transversal to $M'$ along all of $M$. In the strictly pseudoconvex case, this is well known and follows from the classical Hopf boundary lemma. In the equidimensional case ($N=n$), transversality holds for maps of full generic rank provided that the source is of finite type in view of recent results by the authors (see also a previous paper by the first author and L. Rothschild). In the positive codimensional case ($N>n$), the situation is more delicate as examples readily show. In recent work by S. Baouendi, the first author, and L. Rothschild, conditions were given guaranteeing that the map $H$ is transversal outside a proper subvariety of $M$, and examples were given showing that transversality may fail at certain points. One of the results in this paper implies that if $N\le 2n-2$, $M'$ is Levi-nondegenerate, and $H$ has maximal rank outside a complex subvariety of codimension 2, then $H$ is transversal to $M'$ at all points of $M$. We show by examples that this conclusion fails in general if $N\geq 2n$, or if the set $W_H$ of points where $H$ is not of maximal rank has codimension one. We also show that $H$ is transversal at all points if $H$ is assumed to be a finite map (which allows $W_H$ to have codimension one) and the stronger inequality $N\leq 2n-3$ holds, provided that $M$ is of finite type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call