Abstract

Monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercial diluent within a pharmacy. The prepared dosing solution in the IV bag may be transported to the dosing location via manual, vehicular, pneumatic tube system (PTS), or a combination of these methods. In this study, the type and level of physical stresses associated with these three methods and their product quality impact for relatively sensitive and stable mAbs were assessed. Vibration was found to be the main stress associated with manual and vehicle transportation methods, although this was at a relatively low level (<1 GRMS/Root-Mean-Square Acceleration). Shock and drop events, at relatively low levels, were also observed with these methods. PTS transportation showed substantially more intense shock, vibration, and drop stresses and the measured levels were up to 91 G/force of acceleration or deceleration, 3.7 GRMS and 39 G, respectively. Using a foam padding insert for PTS transportation reduced the shock level considerably (91 G to 59 G). Transportation of mAb dosing solutions in IV bags via different methods including PTS transportation variables caused a small increase in the subvisible particle counts and there was no change in submicrometer particle distribution. No visible particles and no significant change to soluble aggregate levels were observed after transportation. Strategies such as removal of IV bag headspace prior to transport and in-line filtration poststress reduced the subvisible particles counts. All tested transportation conditions showed negligible impact on other product quality attributes tested. Removal of IV bag headspace prior to PTS transport prevented formation of micro air bubbles and foaming compared to the unaltered IV bag. This study shows examples where manual, vehicle, and PTS transport methods did not significantly impact product quality, and provides evidence that mAb products that are appropriately stabilized in the dosing solution (e.g., with a surfactant) can be transported via a PTS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call