Abstract
Telework has emerged as a possible solution to transportation-related air pollution problems. This paper analyzes, both deterministically and probabilistically, a California-based 1-day telework scenario, and explores how the mode of transportation and other parameters such as vehicle miles traveled, vehicle model, occupancy rate, telecommuting frequency, and season (heating or cooling) affect the air pollution effects of telework programs when energy consumption-related emissions due to heating, cooling, lighting, and the use of electronic and electrical equipment (in the home and company office) are accounted for. Among others, the study found that total telework-related CO2 emissions during the cooling season and SO2, NOX, and hydrocarbon emissions in both seasons appear to be lower than nontelework emissions for all modes of transportation (except for light rail with higher NOX emissions and urban transit buses with roughly equal NOX emissions in the heating season). Light rail also has higher telework N2O and CH4 emissions. However, given the uncertainties in the data, the differences may be negligible. Urban transit buses and commuter express buses were found to be associated with more telework than nontelework CO emissions in both seasons. For these two modes, telework PM10 emissions are higher in the cooling and about the same in the heating season than nontelework emissions. Natural gas-powered ferries have more telework PM10 emissions than nontelework emissions. The study also found that for low-frequency telework programs energy use impacts could overturn transportation-related emission reductions independent of the mode of transportation used. Avoiding more polluting modes of transportation, increasing occupancy rates, substituting longer commutes and especially increasing telecommuting frequency could counteract these negative effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have