Abstract

We describe a transportable distance measurement system based on synthetic wavelength interferometry. Two frequency-doubled Nd:yttrium aluminum garnet lasers at 532 nm are used to generate a synthetic wavelength of approximately 2.5 cm. A nonpolarizing interferometric system has been set up to eliminate polarization cross-talk issue. A superheterodyne detection was performed to measure the synthetic phase and to determine absolute distances. The capability to achieve fringe interpolation of 2pi/5600 has been demonstrated and an agreement in distance measurement at the 4 microm level has been achieved, compared to an optical interferometric 3 m long displacement bench.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call