Abstract

The single-file water transport through a biomimic water channel consisting of a (6,6) carbon nanotube (CNT) with different types of external point charges is studied using molecular dynamics simulations. It is demonstrated that, as in the aquaporins, asymmetrically positioned charges cannot generate robust unidirectional water flow in the CNT. Thermal fluctuation in bulk water competes with charge affinity to steer the water transport, resulting in nonmonotonic flow with intermittent reversal of transport direction. The energetic analysis suggests that the water-water interaction, determined by dipole orientation configuration, influences the transport rate significantly. These findings can provide correct biomimic understanding of water transport properties and will benefit the design of efficient functional nanofluidic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.