Abstract

With the advancement in terahertz technology, the terahertz electromagnetic field has been proven to be an effective strategy to tune the nanofluidic transport. In this study, we utilize molecular dynamics simulations to systematically analyze the transport of single-file water through a carbon nanotube (CNT) under terahertz electromagnetic fields, focusing on the CNT length, field strength, polarization direction and frequency. Strikingly, with the increase in field strength, the water flow exhibits a transition from normal to super permeation states because of the resonance effect, and the threshold field shifts to low values for long CNTs. The field component parallel to the CNT axis contributes to the resonance effect and increasing water flow, but the vertical component maintains the structure of the single-file water chain and even impedes the water flow. As a result, for a continuous change of field direction, the water flow changes from super permeation to normal states. With the increase in field frequency, the water flow also changes from super permeation to normal or even frozen states, where a higher frequency is required to trigger the super permeation states for lower field strength. Our results provide a comprehensive insight into the effect of terahertz electromagnetic field on the transport of single-file water chains and should have great implications for designing novel nanofluidic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call