Abstract

The electrical transport properties of a four-layered hydrogen-terminated cubic boron nitride sub-nanometer film in contact with gold electrodes are investigated via density functional calculations. The sample exhibits asymmetric metallic surfaces, a fundamental feature that triggers the system to behave like a typical p–n junction diode for voltage bias in the interval −0.2 ≤ V ≤ 0.2, where a rectification ratio up to 62 is verified. Further, in the wider region −0.3 ≤ V ≤ 0.3, negative differential resistance with a peak-to-valley ratio of 10 is observed. The qualitative behavior of the I–V characteristics is described in terms of the hydrogenated cBN film equilibrium electronic structure. Such a film shows metallic surfaces due to surface electronic states at a fraction of eV above and below the Fermi level of the N–H terminated and B–H terminated surfaces, respectively, with a wide bulk-band gap characteristic of BN materials. Such a mechanism is supported by transmission coefficient calculations, with the Landauer–Büttiker formula governing the I–V characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.