Abstract

We have extensively studied the electronic properties of epitaxial graphene grown on the Si face of a 6H silicon carbide substrate by thermal decomposition in an argon atmosphere. Using e-beam lithography, large van der Pauw structures as well as Hall bars were patterned. Their size ranged from millimeters down to submicrometer-sized Hall bars, the latter entirely placed on atomically flat substrate terraces. We found reproducible electronic properties, independent of the sample size and orientation, over a broad temperature range. A comparison of the mobility values indicated no enhanced scattering at the macroscopic step edges of the SiC substrate and due to adsorbed molecules. However, the strong coupling to the substrate results in an elevated charge carrier density n and a reduced mobility μ compared to exfoliated graphene. If n is decreased the mobility rises substantially (up to 29 000 cm 2/V s at 25 K), and Shubnikov–de Haas oscillations and the graphene-like quantum Hall effect become visible. This leads to the conclusion that the electrons in epitaxial graphene have the same quasi-relativistic properties previously shown in exfoliated graphene and expected from theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.