Abstract

AbstractAmmonium based protic ionic liquids are highlighted for their great potential to sustain proton transport in proton exchange membrane (PEM) fuel cells. Yet, there remain questions concerning the effect of water produced by the fuel cell at the cathode side on the performance of the ionic liquid. In this contribution we report the effect of water on the transport properties and the local coordination in the binary system of the protic ionic liquid diethylmethylammonium methanesulfonate ([DEMA][OMs]) and water, employing 1H NMR, Raman, and infrared spectroscopy. We observe that the self‐diffusion of cations and anions increases with the water content and that cations and anions diffuse at the same rate at all concentrations investigated. 1H NMR and vibrational spectroscopy, on the other hand, indicate that added water interacts primarily with the anion and slightly affects the ionicity of the ionic liquid. In addition, by investigating the thermal stability of the binary system we find that although [DEMA][OMs] displays a continuous loss of water upon increasing temperature a fraction of water molecules can be retained even above 120 °C, and that the complete loss of water is immediately followed by decomposition, which is observed to occur at about 185 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.