Abstract

A numerical investigation of the transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field as a function of wall temperature, fuel ratio and Reynolds number are presented. The fuel Reynolds number and H 2O/CH 3OH molar ratio (S/C) that influence the transport phenomena and methanol conversion are explored in detail. In addition, the effects of various wall temperatures on the plates that heat the channel are also investigated. The predictions show that conduction through the wall plays a significant effect on the temperature distribution and must be considered in the modeling. The predictions also indicate that a higher wall temperature enhances the chemical reaction rate which, in turn, significantly increases the methanol conversion. The methanol conversion is also improved by decreasing the Reynolds number or increasing the S/C molar ratio. When the serpentine flow field of the channel is heated either through top plate ( Y = 1) or the bottom plate ( Y = 0), we observe a higher degree of methanol conversion for the case with top plate heating. This is due to the stronger chemical reaction for the case with top plate heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call