Abstract

Silver nanoparticles (AgNPs) are usually capped with stabilizing agents to protect their activities and improve stability. Polyvinylpyrrolidone (PVP) is one of the most used capping agents of AgNPs, and may affect the transport of AgNPs in porous media. The transport and retention of AgNPs capped with PVPs of different molecular weights (PVP10-AgNP, PVP40-AgNP and PVP360-AgNP) in uncoated, and humic acid (HA)-, kaolinite (KL)- and ferrihydrite (FH)-coated sand porous media were investigated. Among the three AgNPs, PVP360-AgNP exhibited the highest mobility and eluted from all types of porous media. This is because PVPs of higher molecular weight provided stronger steric effect and electrostatic repulsive forces among PVP-AgNPs, inducing stronger blocking and shadow effects. The transport of the PVP-AgNPs increased in the HA-Sand columns, while decreased in the KL- and FH-Sand columns, especially for PVP10-AgNP and PVP40-AgNP. The simulation results using one-site kinetic model indicated that HA-Sand reduced the maximum retention capacity (Smax), while KL- and FH-Sand increased the Smax as well as the first-order attachment rate coefficients (katt), particularly at high ionic strength. The results shed light on the interplay of the capping agents of AgNPs and the surface heterogeneity on the transport of AgNPs in porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call