Abstract
The purpose of this work is to investigate the transport of rate-limited sorbing solutes in a saturated, aggregated porous medium. Data obtained from miscible displacement experiments are used to examine the transport of solutes constrained by rate-limited sorption and mass transfer, to examine the synergistic effects of two non-ideality factors, and to test the capability of a multiprocess non-equilibrium (MPNE) model to simulate transport. The input parameters were obtained independently, allowing the model to be used in a predictive mode. The independent predictions obtained with the MPNE model provided very good descriptions of the experimental data for several organic solutes with different structures. The effects of multiple non-ideality factors controlling solute transport were explored, and flow interruption experiments provided additional evidence regarding the synergistic effects of rate-limited sorption and rate-limited mass transfer. Our analyses have shown quantitatively that both mass distribution and characteristic reaction time are important factors influencing transport. Solute characteristics controlled the degree to which each factor influenced transport behavior for a given porous medium. The velocity dependency of the mass-transfer and desorption rate coefficients and the resultant impact on solute transport were also examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.