Abstract

Knowledge of the fate and transport of nanoscale zero-valent iron (nZVI) in saturated porous media is crucial to the development of in situ remediation technologies. This work systematically compared the retention and transport of carboxymethyl cellulose (CMC) modified nZVI (CMC-nZVI) and sulfidated nZVI (CMC-S-nZVI) particles in saturated columns packed with quartz sand of various grain sizes and different surface metal oxide coatings. Grain size reduction had an inhibitory effect on the transport of CMC-S-nZVI and CMC-nZVI due to increasing immobile zone deposition and straining in the columns. Metal oxide coatings had minor effect on the transport of CMC-S-nZVI and CMC-nZVI because the sand surface was coated by the free CMC in the suspensions, reducing the electrostatic attraction between the nZVI and surface metal oxides. CMC-S-nZVI displayed greater breakthrough (C/C0 = 0.82–0.90) and higher mass recovery (84.9%–89.3%) than CMC-nZVI (C/C0 = 0.70–0.80 and mass recovery = 70.9%–79.6%, respectively) under the same experimental conditions. A mathematical model based on the advection-dispersion equation simulated the experimental data of nZVI breakthrough curves very well. Findings of this study suggest sulfidation could enhance the transport of CMC-nZVI in saturated porous media with grain and surface heterogeneities, promoting its application in situ remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call