Abstract

We report on the first demonstration of transport of a multispecies ion crystal through a junction in a rf Paul trap. The trap is a two-dimensional surface-electrode trap with an X junction and segmented control electrodes to which time-varying voltages are applied to control the shape and position of potential wells above the trap surface. We transport either a single ^{171}Yb^{+} ion or a crystal composed of a ^{138}Ba^{+} ion cotrapped with the ^{171}Yb^{+} ion to any port of the junction. We characterize the motional excitation by performing multiple round-trips through the junction and back to the initial well position without cooling. The final excitation is then measured using sideband asymmetry. For a single ^{171}Yb^{+} ion, transport with a 4 m/s average speed induces between 0.013±0.001 and 0.014±0.001 quanta of excitation per round-trip, depending on the exit port. For a Ba-Yb crystal, transport at the same speed induces between 0.013±0.001 and 0.030±0.002 quanta per round-trip of excitation to the in-phase axial mode. Excitation in the out-of-phase axial mode ranges from 0.005±0.001 to 0.021±0.001 quanta per round-trip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.