Abstract
The experimental results of the studies on the transportation of water droplets on a superhydrophobic silica aerogel-powder-coated surface are reported. The superhydrophobic silica aerogels were prepared using sol–gel processing of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, and base (NH 4OH)-catalyzed water followed by supercritical drying using methanol solvent. The molar ratio of NH 4OH/MTMS, H 2O/MTMS, and MeOH/MTMS were varied from 1.7 × 10 −1 to 3.5 × 10 −1 , 2 to 8, and 1.7 to 14, respectively, to find out the best-quality aerogels in terms of higher hydrophobicity and high droplet velocity. A specially built device was used for the measurement of velocity of water droplet of size 2.8 mm ( ± 0.2 mm ) on an inclined surface coated with superhydrophobic aerogel powder. Liquid marbles were prepared by rolling water droplets on aerogel powder and the marble(s) velocities on a noncoated inclined surface were compared with that of the water droplets. It was observed that the microstructure of the aerogel affects the droplet as well as marble velocities considerably. For an aerogel with uniform and smaller particles, the water droplet and marble velocities were observed to be maximum, i.e., 144 and 123 cm/s, respectively, whereas for the aerogels with bigger and nonuniform particles, the water droplet and marble velocities were observed to be minimum, i.e., 92 and 82 cm/s, respectively. The results have been discussed by taking into account the contact angles and microstructural observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.