Abstract
The transport of particles in turbulent flows is a common problem in hydraulic engineering. In this paper, the focus is set on a numerical model used to simulate the transport of small bodies (debris, algae, etc.) along a coastline. In this problem, the particles are larger than the small turbulent eddies, but smaller than the large turbulent eddies, and sufficiently diluted within the flow so that each particle does not affect the flow or the motion of other particles. A mixed Eulerian–Lagrangian approach was chosen in order to model a large flow area with sufficient information for the turbulent diffusion. This model is validated through an experiment on particles released into a partially obstructed channel flow. The measurements are then compared with simulations using two Eulerian industrial codes, Telemac-2D and OpenFoam. Finally, an application to algae bloom transport in a harbour is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.