Abstract
Field observations of active and fossil natural geothermal fields indicate that geothermal fluids are primarily transported along dikes and fault zones. Fluid transport along dikes (commonly through fractures at their margins) is controlled by the cubic law where the volumetric flow rate depends on the aperture of the fracture in the 3rd power. Dikes (and inclined sheets) also act as heat sources for geothermal fields. In high-temperature fields in volcanoes in Iceland dikes and inclined sheets constitute 80–100% of the rock at crustal depths of 1.5–2 km. Holocene feeder-dikes are known to have increased the activity of associated geothermal fields. Fault zones transport geothermal fluids along their two main hydromechanical units, the core and the damage zone. The core is comparatively thin and primarily composed of breccia, gouge, and clay and related low-permeability porous materials. By contrast, the fault damage zone is characterised by fractures whose frequency is normally highest at the contact between the core and the damage zone. Fluid transport in the damage zone, and in the core following fault slip, is controlled by the cubic law. During non-slip periods fluid transport in the core is primarily controlled by Darcy’s law. Secondary mineralisation (forming mineral veins and amygdales) tends to reduce the fault-zone permeability. Repeated earthquake activity is thus needed to maintain the permeability of fault zones in active natural geothermal fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.