Abstract
The entanglement dynamics of spin chains is investigated using Heisenberg–XY spin Hamiltonian dynamics. The various measures of two-qubit entanglement are calculated analytically in the time-evolved state starting from initial states with no entanglement and exactly one pair of maximally entangled qubits. The localizable entanglement between a pair of qubits at the end of chain captures the essential features of entanglement transport across the chain, and it displays the difference between an initial state with no entanglement and an initial state with one pair of maximally-entangled qubits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.