Abstract

We consider the interplay of the elastic pinning and the Anderson localization in the transport properties of a charge-density wave in one dimension, within the framework of the Luttinger model in the limit of strong repulsion. We address a conceptually important issue of which of the two disorder-induced phenomena limits the mobility more effectively. We argue that the interplay of the classical and quantum effects in transport of a very rigid charge-density wave is quite nontrivial: the quantum localization sets in at a temperature much smaller than the pinning temperature, whereas the quantum localization length is much smaller than the pinning length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.