Abstract
We have fabricated symmetric 200 nm and asymmetric 100 by 200 nm quantum dots by the split gate technique within a MOSFET structure. DC electrical and magnetotransport measurements were performed at 4.2 K in a liquid-Helium cryostat. It is found that varying the electrochemical potential by changing the bias on a top gate leads to oscillations in the DC conductance through the dot resembling Coulomb blockade peaks, but when the depletion gate biases are swept, these peaks become more complex in nature, exhibiting crossing or anti-crossing behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.