Abstract

The paper considers the free molecular flow of gas through the dusty porous surface layer of a comet nucleus. The study is based on computer models of generation of a porous medium and Knudsen gas diffusion. We consider various types of homogeneous and heterogeneous layers constructed from nonintersecting spheres, including layers that contain microcracks or inner cavities. Using the test-particle method, we quantitatively estimate the free path distribution function, layer permeability, and effective kinetic characteristics of sublimation products passing through a nonisothermal porous layer. In addition, in this approach, we consider the volumetric absorption of visible solar radiation in the near-surface absorbing layer. Simple approximation expressions are obtained for all the transport characteristics under study, which makes it possible to estimate the characteristics with sufficient accuracy for practical applications in the physics of comets. The results will be used to construct new consistent models of energy transfer in the near-surface layer of a comet nucleus and, first of all, to analyze the results of the observations of comet 67P/Churyumov‒Gerasimenko.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.