Abstract

Two-dimensional electron gas systems (2DEGs) generated at the oxide interfaces that exhibit rich physics phenomena opened up an era for oxide-based electronics, photonics, and spintronics. The recent discovery of superconductivity plus the strong spin-orbital coupling naturally existing in the 2DEGs of KTaO3 (KTO) made KTO an exciting platform for the interplay of the electronic and spin degrees of freedom to create exotic physical properties. By directly placing KTO’s 2DEGs next to another strongly-correlated oxide with nontrivial topological nodes, we reveal the anomalous effects which were induced by the topological states in the electronic transport properties of the KTO’s 2DGEs, due to the electronic reconstruction caused by the proximity effect. This adds an additional prospect to the functions of KTO heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.