Abstract

The transport of axonal microtubules in growing neurites has been a controversial issue because of clear but conflicting results obtained with fluorescence-marking techniques. We have attempted to resolve the discordance via analysis of the relationship between apparent microtubule translocation and cell adhesion. Neuronal cultures were prepared from Xenopus embryos 1 d after injection of Cy3-conjugated tubulin into one of the blastomeres of two-cell-stage embryos. Anterograde translocation of axonal microtubules was observed in neurons cultured on a laminin-coated surface, in agreement with previously published data for Xenopus embryonic neurons. However, when neuronal cultures were prepared on a concanavalin A-treated surface, the axonal microtubules were stationary, as reported for all other neurons investigated previously. Neuronal cultures prepared on laminin- and concanavalin A-coated surfaces also demonstrated dramatic differences in the pattern of axonal growth, dynamics of axonal microtubules, and response to brefeldin A treatment. Our findings suggest that transport and dynamics of axonal microtubules may be directly affected by the mechanical tension produced by growth cone activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call